

What?

We study the relevance of the common RecSys practice consisting in:

1. Learning **item embeddings** to summarize similarities between some recommendable items.

2. Averaging them to represent users or other recommendable concepts in the same space.

Averaging embeddings of songs from a playlist (Ex 1) or user's listening history (Ex 2), to obtain a playlist or user embedding.

Why?

Averaging embeddings is simple and scalable. But this practice is often adopted without a clear **theoretical justification** from a RecSys standpoint: **Ex 1:** Would songs similar^{*} to the playlist be similar to songs in this playlist? ESSENTIALS rock

Ex 2: Would songs similar^{*} to the user be relevant recommendations for them?

*Similar in the embedding space, according to some similarity metric, e.g., the inner product.

How?

1. We propose a **consistency score**, measuring the faithfulness of average embeddings relative to the recommendable items they should summarize:

Consistency_k(X) = $\mathbb{E}_{\mathcal{U} \in X_k}$ [Precision_k(\mathcal{U})], where Precision_k(\mathcal{U}) = $\frac{|X_k(\mu_{\mathcal{U}}) \cap \mathcal{U}|}{k}$ and $k \in \{1, ..., N\}$.

Notation: \mathcal{X} : set of $N \in \mathbb{N}^*$ *d*-dim. item embeddings. \mathcal{X}_k : set of subsets of \mathcal{X} of cardinality *k*. For any $\mathcal{U} = \{u_i\}_{1 \le i \le k} \in \mathcal{X}_k$, its average embedding is $\mu_{\mathcal{U}} = \frac{1}{k} \sum u_i$. $\mathcal{X}_k(\mu_{\mathcal{U}})$: set of the k nearest neighbors of $\mu_{\mathcal{U}}$ in \mathcal{X} according to a similarity metric s. **Interpretation:** Higher values = on expectation, $\mu_{\mathcal{U}}$ averages comprise more items from \mathcal{U} in their top-k neighborhood.

2. We prove its mathematical expression in a general theoretical setting:

 $X_{i,i} \sim \mathcal{N}(0,1)$

- Consistency_k(\mathcal{X}): \nearrow with the **dimension** d.
- \searrow with the catalog size N and cardinality k.
- \searrow with the items' **kurtosis** (\sim more outliers).
- Scores are **close to 1** for a small *k*.
- $u \in \mathcal{U}, v \in \overline{\mathcal{U}} \Rightarrow \mathbb{P}(s(u, \mu_{\mathcal{U}}) > s(v, \mu_{\mathcal{U}})) > 0.5.$

3. We analyze its **empirical behavior** on song embedding data from Deezer:

- "Real-world" averages are less consistent!
- Even for a small *k*, averages do **not** always remain similar to the items they summarize.
- ALS: steady with k. SVD: declining with k.
- Future research: align embeddings with our theoretical setting, e.g., via a regularization.

Data: 3 song embedding variants, computed from usage data with ALS (d = 256, N = 50K) or SVD (d = 128, N = 50K or 2M).

 $X_{i,i} \sim Uniform(-1, 1)$

2 ?

Be careful! In an embedding-based recommender system:

Averaging item embeddings does not always consistently summarize them.

On the Consistency of Average Embeddings for Item Recommendation Walid Bendada^{1,2}, Guillaume Salha-Galvan¹, Romain Hennequin¹, Thomas Bouabça¹, Tristan Cazenave² ²LAMSADE, Université Paris Dauphine, PSL ¹Deezer Research