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Appendix
This appendix supplements the article “Exploring Large Action Sets with Hyperspherical Embeddings using von Mises-Fisher
Sampling” and is organized as follows:

• Appendices A, B, C, and D provide detailed proofs and discussions for all theoretical results presented in the paper.

• Appendix E explores the connection between vMF-exp and Thompson Sampling.

• Appendix F explains practical methods for sampling from the vMF distribution.

• Appendix G presents the complete results of our Monte Carlo simulations.

• Appendix H details an additional experimental study using a large-scale, publicly available GloVe dataset.

• Appendix I highlights the successful large-scale deployment of vMF-exp in the private production system of the global
music streaming service Deezer for large-scale music recommendation.

A. Asymptotic Behavior of Boltzmann Exploration (Proof of Proposition 4.2)
We begin with the proof of Proposition 4.2 claiming that, in the setting of Section 4.1, we have:

PB-exp(a | n, d, V, κ) = fvMF(A | V, κ)A(Sd−1)

n︸ ︷︷ ︸
denoted P0(a|n,d,V,κ)

+o(
1

n
√
n
), (22)

with fvMF the probability density function (PDF) of the von Mises-Fisher (vMF) (Fisher, 1953) distribution:

∀A ∈ Sd−1, fvMF(A | V, κ) = Cd(κ)e
κ⟨V,A⟩, (23)

where A(Sd−1) is the surface area of Sd−1, the d-dimensional unit hypersphere, and Cd(κ) is the normalizing constant.

Proof. By definition,

PB-exp(a | n, d, V, κ) = E Xn∼U(Sd−1)

[
eκ⟨V,A⟩

eκ⟨V,A⟩ +
∑n

i=1 e
κ⟨V,Xi⟩

]
=

eκ⟨V,A⟩

n
E Xn∼U(Sd−1)

[
1

eκ⟨V,A⟩

n +
∑n

i=1
eκ⟨V,Xi⟩

n

]

=
eκ⟨V,A⟩

n
E Xn∼U(Sd−1)

[
1

Dn

]
.

(24)

We use Dn to denote the denominator of the expression inside the above expectation. Dn is the empirical average of n
independent and identically distributed (i.i.d.) random variables (plus a constant). Therefore, by applying the Central
Limit Theorem (CLT) (Fischer, 2011), we know that as n grows it will be asymptotically distributed according to a Normal
distribution with the following expectation:

E Xn∼U(Sd−1) [Dn] = E Xn∼U(Sd−1)

[
eκ⟨V,A⟩

n
+

n∑
i=1

eκ⟨V,Xi⟩

n

]

=
eκ⟨V,A⟩

n
+ E X∼U(Sd−1)

[
eκ⟨V,X⟩

]
.

(25)

Moreover, we have:

E X∼U(Sd−1)

[
eκ⟨V,X⟩

]
=

∫
X∈Sd−1

eκ⟨V,X⟩

A(Sd−1)
dX

=
1

A(Sd−1)Cd(κ)
,

(26)
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using the fact that Cd(κ) is the normalizing constant of a vMF distribution, ensuring that its PDF (Equation (23)) sums to 1
when integrated on the unit hypersphere.

Let us define σ = Var X∼U(Sd−1)

[
eκ⟨V,X⟩] Although we do not need an explicit expression for σ, we know it is finite.

Additionally, let g : x 7→ 1

x
be the inverse function. The CLT ensures that:

√
n
[
Dn − 1

A(Sd−1)Cd(κ)

]
D−→N (0, σ2), (27)

where D−→ denotes convergence in distribution (Jacod & Protter, 2004). Moreover, since g is a differentiable function on
R∗

+, we use the Delta method (Oehlert, 1992) to infer that:

√
n[g(Dn)− g(

1

A(Sd−1)Cd(κ)
)]

D−→N (0, σ2[g′(
1

A(Sd−1)Cd(κ)
)]2). (28)

Replacing g and g′ by their respective values, we obtain:

√
n
[ 1

Dn
− Cd(κ)A(Sd−1)

]
D−→N (0, σ2(A(Sd−1)Cd(κ))

4). (29)

Furthermore, recall that if a sequence Z1, Z2, ... of random variables converges in distribution to a random variable Z, then
for all bounded continuous function ϕ, lim

n→+∞
E [ϕ(Zn)] = E [ϕ(Z)] (Jacod & Protter, 2004). Since for every n the random

variable Zn =
√
n[ 1

Dn
− Cd(κ)A(Sd−1)] has bounded values, we can simply chose the identity function for ϕ to conclude

that :

lim
n→+∞

E Xn∼U(Sd−1)

[√
n[

1

Dn
− Cd(κ)A(Sd−1)]

]
= 0, (30)

which is equivalent to:

E Xn∼U(Sd−1)

[
1

Dn

]
= Cd(κ)A(Sd−1) + o(

1√
n
). (31)

Finally, by multiplying Equation (31) by eκ⟨V,A⟩

n , we obtain Equation (22), concluding the proof.
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B. Asymptotic Behavior of vMF Exploration in d = 2 dimensions (Proof of Proposition 4.3,
Part 1)

We now prove Proposition 4.3 when d = 2. In 2 dimensions, the vMF distribution takes the special form of the von Mises
(vM) distribution (Mardia & Jupp, 2009) which, instead of describing the distribution of the dot product between V and Ṽ ,
describes the distribution of their angle θ. The PDF of a von Mises distribution is defined as follows:

∀θ ∈ [−π, π], fvM(θ | κ) = eκ cos(θ)

2πI0(κ)
. (32)

Let us define θ0 as the angle between V and A. In this section, we prove that:

PvMF-exp(A | n, d = 2, κ) =
eκ cos(θ0)

nI0(κ)
+O(

1

n2
). (33)

Proof. By definition,

PvMF-exp(A | n, d = 2, κ) = E Xn∼U(S1)

[
P(Ṽ ∈ SVoronoı̈(A | Xn+1)

)
], (34)

where SVoronoı̈(Xi | Xn) = {Ṽ ∈ Sd−1,∀j ∈ In, ⟨Ṽ , Xi⟩ ≥ ⟨Ṽ , Xj⟩}. Let us call Yn = {Yi} the result of the permutation
of the indices of Xn such that the (signed) angles βi between A and Yi are sorted in increasing order. Since the {Xi} are
i.i.d. and uniformly distributed on the circle, then the angles between A and the {Xi} are i.i.d. and uniformly distributed on
[0, 2π]. Therefore, the set {βi} is the set of the order statistics of n i.i.d. random variables uniformly distributed on [0, 2π].
Consequently, the set { βi

2π} is the set of the order statistics of n i.i.d. random variables uniformly distributed on [0, 1], which
are known to follow Beta distributions (Gentle, 2009) defined as follows:

∀1 ≤ i ≤ n,
βi

2π
∼ Beta(i, n+ 1−i). (35)

As a consequence, we have:

E [β1] =
2π

n+ 1
, (36)

E [βn] =
2πn

n+ 1
, (37)

Var [β1] = Var [βn] =
4π2n

(n+ 1)2(n+ 2)
. (38)

Moreover, for given values of Yi, we can see from Figure 4 that, in 2 dimensions, Voronoı̈ cells are arcs of the circle and
are delimited by perpendicular bisectors of two neighboring points. Specifically, the Voronoı̈ cell of A is delimited by the
perpendicular bisector of A and Y1 on one side, and the perpendicular bisector of A and Yn on the other side. By denoting θ
the (signed) angle between V and Ṽ , we have:

P
(
Ṽ ∈ SVoronoı̈(A | Xn+1)

)
= P

(
θ ∈ [θ0 +

βn − 2π

2
, θ0 +

β1

2
] | θ ∼ vM(0, κ), β1, βn

)
=

∫ θ0+
β1
2

θ=θ0+
βn−2π

2

fvM(θ | κ) dθ.
(39)

Therefore:

PvMF-exp(A | n, d = 2, κ) = E β1,βn

[∫ θ0+
β1
2

θ=θ0+
βn−2π

2

fvM(θ | κ) dθ

]
. (40)

To get an asymptotic expression of the probability that θ lies between the considered bounds, we can first notice that as n
grows, β1 will approach 0 and βn will approach 2π. This means that the integral we need to compute will have very narrow
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Figure 4. For d = 2: vMF-exp explores the action A when Ṽ lies in its Voronoı̈ cell, shown in red.

bounds centered on θ0, and so we can leverage the Taylor series expansion (Abramowitz & Stegun, 1948) of fvM around θ0
and obtain:

fvM(θ | κ) = fvM(θ0 | κ) +R0(θ), (41)

where R0(θ) =
∑∞

i=1
f
(i)
vM (θ0|κ)

i! (θ − θ0)
i is the zero order remainder term of the Taylor series expansion of fvM near θ0.

We can now estimate the portion of the integral of Equation (40) corresponding to each term of the expansion separately,
and show that when n becomes large:

• the zero-order term gives a probability of selecting A that is the same as the asymptotic behavior of B-exp:

E β1,βn

[∫ θ0+
β1
2

θ=θ0+
βn−2π

2

fVM(θ0 | κ) dθ
]
= eκ cos(θ0)

nI0(κ)
+O( 1

n2 ).

• the expectation of the remainder term is bounded by a 1
n2 term: E β1,βn

[∫ θ0+
β1
2

θ=θ0+
βn−2π

2

R0(θ) dθ

]
= O( 1

n2 ).
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B.1. Zero-Order Estimate

Let us study the zero-order approximation of fvM(θ | κ) near θ0:

E β1,βn

[∫ θ0+
β1
2

θ=θ0+
βn−2π

2

fVM(θ0 | κ) dθ

]
= E β1,βn

[
fVM(θ0 | κ)(θ0 +

β1

2
− (θ0 +

βn − 2π

2
))

]
= E β1,βn

[
fvM(θ0 | κ)(π − βn − β1

2
)

]
= πfvM(θ0 | κ)E β1,βn

[
1− βn − β1

2π

]
=

eκ cos(θ)

2I0(κ)
(1− E β1,βn

[
βn

2π

]
+ E β1,βn

[
β1

2π

]
)

=
eκ cos(θ0)

2I0(κ)

n+ 1− n+ 1

n+ 1

=
eκ cos(θ0)

2I0(κ)

2

n+ 1

=
eκ cos(θ0)

(n+ 1)I0(κ)

=
eκ cos(θ0)

nI0(κ)
− eκ cos(θ0)

n(n+ 1)I0(κ)

=
eκ cos(θ0)

nI0(κ)
+O(

1

n2
).

(42)

This proves that, asymptotically, the contribution of the zero-order term of fvM to the probability of selecting A is equal to
the probability of selecting A using B-exp with the same κ value.

To understand how fast vMF-exp reaches its asymptotic behavior, we now need to study R0(θ), the remainder of the Taylor
series expansion of fVM around θ0.

B.2. Bounding of the Remainder Term

We start by computing the first derivative of fvM:

∀θ ∈ [0, 2π], |f ′
vM(θ | κ)|= | sin(θ)|κeκ cos(θ)

I0(κ)
, (43)

which is bounded4 on [0, 2π] by M = κeκ

I0(κ)
. According to the Taylor-Lagrange inequality (Abramowitz & Stegun, 1948),

this in turn bounds the remainder term as follows:

∀θ ∈ [0, 2π], |R0(θ)| ≤ M |θ − θ0|. (44)

4We note that a tighter bound could be found by studying the second derivative, but will not be necessary for the purpose of this proof.
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In particular, this inequality holds for every θ ∈ [θ0 +
βn−2π

2 , θ0 +
β1

2 ], and so:

∫ θ0+
β1
2

θ=θ0+
βn−2π

2

|R0(θ)|dθ ≤
∫ θ0+

β1
2

θ=θ0+
βn−2π

2

M |θ − θ0|dθ

=

∫ θ0+
β1
2

θ=θ0

M(θ − θ0) dθ +

∫ θ0

θ=θ0+
βn−2π

2

M(θ0 − θ) dθ

=

∫ β1
2

θ=0

Mθ dθ −
∫ 0

θ= βn−2π
2

Mθ dθ

= M
β2
1 + (βn − 2π)2

8
.

(45)

The above inequality holds when considering the expected values over uniformly distributed Xi:

E β1,βn

[∫ θ0+
β1
2

θ=θ0+
βn−2π

2

|R0(θ)|dθ

]
≤ M

E β1,βn

[
β2
1

]
+ E β1,βn

[
(βn − 2π)2

]
8

= M
Var β1,βn

[β1] + (E β1,βn
[β1])

2 + Var β1,βn
[(βn − 2π)] + (E β1,βn

[βn − 2π])2

8

=
M

8
(

2× 4π2n

(n+ 1)2(n+ 2)
+

2× 4π2

(n+ 1)2
)

=
Mπ2

(n+ 1)(n+ 2)

= O(
1

n2
).

(46)

Since
∣∣∣∣E β1,βn

[∫ θ0+
β1
2

θ=θ0+
βn−2π

2

R0(θ) dθ

]∣∣∣∣ ≤ E β1,βn

[∫ θ0+
β1
2

θ=θ0+
βn−2π

2

|R0(θ)|dθ
]

, we have shown:

E β1,βn

[∫ θ0+
β1
2

θ=θ0+
βn−2π

2

R0(θ) dθ

]
= O(

1

n2
). (47)

In summary, when combining the asymptotic behavior of the zero-order term and the remainder term, we conclude that
when d = 2 we have:

PvMF-exp(A | n, d = 2, κ) =
eκ cos(θ0)

nI0(κ)
+O(

1

n2
). (48)

This proves Proposition 4.3 when d = 2. Note that, comparing the asymptotic expressions for PB-exp(A | n, d = 2, κ) and
PvMF-exp(A | n, d = 2, κ), also gives us a proof for Proposition 4.1 when d = 2.
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C. Asymptotic Behavior of vMF Exploration in d > 2 dimensions (Proofs of Proposition 4.3, Part
2, and of Proposition 4.4)

We now prove Proposition 4.3 when d > 2, starting with a series of intermediary lemmas. We subsequently justify the
approximate expression of Proposition 4.4.

C.1. Intermediary Lemmas

We introduce a series of lemmas regarding the properties of the Voronoı̈ cell of A when Xn ∼ Ud−1. We recall that, for a
given set of embedding vectors Xn, we use the notation Xn+1 = Xn ∪ {A}.

Lemma C.1. Let d ∈ N, d ≥ 2, A ∈ Sd−1 and n ∈ N∗. As before, let A(Sd−1) denote the surface area of Sd−1. Then:

E Xn∼U(Sd−1)

[
A(SVoronoı̈(A | Xn+1))

]
=

A(Sd−1)

n+ 1
. (49)

Proof. To compute this expectation, one can notice that:

E Xn∼U(Sd−1)

[
A(SVoronoı̈(A | Xn+1))

]
= E Xn+1∼U(Sd−1)

[
A(SVoronoı̈(Xn+1 | Xn+1)) | Xn+1 = A

]
. (50)

Indeed, considering that A is known is equivalent to considering A as a random vector Xn+1 ∼ U(Sd−1) with the constraint
Xn+1 = A. We will now show that the right part of Equation (50) is actually independent of the value of A.

Consider any point A′ ∈ Sd−1. One can always define a (not necessarily unique) rotation RA,A′ such that RA,A′(A) = A′.
Since rotations preserve inner products, they also preserve areas of Voronoi cells, which means that for a given set of vectors
Xn+1, we have:

A
(
SVoronoı̈(Xn+1 | Xn+1)

)
= A

(
SVoronoı̈(RA,A′(Xn+1) | RA,A′(Xn+1))

)
. (51)

Moreover, the image of the rotation of a random vector uniformly distributed on the hypersphere is also uniformly distributed,
which means that:

Xn+1 ∼ U(Sd−1) ⇔ RA,A′(Xn+1) ∼ U(Sd−1). (52)

Therefore:

E Xn+1∼U(Sd−1)

[
A(SVoronoı̈(Xn+1 | Xn+1)) | Xn+1 = A

]
=E Xn+1∼U(Sd−1)

[
A(SVoronoı̈(RA,A′(Xn+1) | RA,A′(Xn+1))) | Xn+1 = A

]
=E RA,A′ (Xn+1)∼U(Sd−1)

[
A(SVoronoı̈(RA,A′(Xn+1) | RA,A′(Xn+1))) | RA,A′(Xn+1) = A′

]
=E RA,A′ (Xn)∼U(Sd−1)

[
A(SVoronoı̈(A

′ | RA,A′(Xn)))
]

=E Xn∼U(Sd−1)

[
A(SVoronoı̈(A

′ | Xn))
]
.

(53)

This result proves that E Xn∼U(Sd−1)[A(SVoronoı̈(A | Xn+1))] is independent of A. Then, we use this information along
with Equation (50) to obtain:

E Xn∼U(Sd−1)

[
A(SVoronoı̈(A | Xn+1))

]
= E Xn+1∼U(Sd−1)

[
A(SVoronoı̈(Xn+1 | Xn+1)

]
. (54)

Since
n+1∑
i=1

A(SVoronoı̈(Xi | Xn+1)) = A(Sd−1) (Du et al., 1999; 2010) and the Xi are i.i.d., we derive:

E Xn+1∼U(Sd−1)

[
A(SVoronoı̈(Xn+1 | Xn+1))

]
=

A(Sd−1)

n+ 1
. (55)

Combining Equations (50) with Equation (55) leads to Equation (49), concluding the proof.
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A
N(A n)

V

O

Figure 5. The Voronoı̈ cell of A, SVoronoı̈(A | Xn+1), along with the average normal vector of the cell N(A | n). On expectation, (A | n)
and A are collinear.

Lemma C.2. Let d ∈ N, d ≥ 2, A ∈ Sd−1 and n ∈ N∗. Then:

∃λ ∈ R,E Xn∼U(Sd−1)

[ ∫
Ṽ ∈SVoronoı̈(A|Xn+1)

Ṽ dṼ
]
= λA. (56)

Proof. We want to prove that the average normal vector of the Voronoı̈ cell of A and A are collinear, as illustrated in Figure 5.
To do so, we will show that this average normal vector is invariant to any rotation around A. For every θ ∈ [0, 2π], we define
RA,θ as the rotation around A of the angle θ. As discussed in the proof of Lemma C.1, Xn ∼ U(Sd−1) ⇔ RA,θ(Xn) ∼
U(Sd−1). Moreover, RA,θ(A) = A. Let us denote:

N(A | n) = E Xn∼U(Sd−1)

[ ∫
Ṽ ∈SVoronoı̈(A|Xn+1)

Ṽ dṼ
]
, (57)

the expected normal vector of the Voronoı̈ cell of A. Its image by the rotation RA,θ verifies:

RA,θ(N(A | n)) = RA,θ

(
E Xn∼U(Sd−1)

[ ∫
Ṽ ∈SVoronoı̈(A|Xn+1)

Ṽ dṼ
])

= E Xn∼U(Sd−1)

[ ∫
Ṽ ∈SVoronoı̈(RA,θ(A)|RA,θ(Xn+1))

Ṽ dṼ
]

= E RA,θ(Xn)∼U(Sd−1)

[ ∫
Ṽ ∈SVoronoı̈(A|RA,θ(Xn+1))

Ṽ dṼ
]

= N(A | n).

(58)

This proves that N(A | n) and A are collinear.

Lemma C.3. With the same hypotheses as Lemma C.2:

λ =
A(Sd−1)

n+ 1
E Xn∼U(Sd−1),Ṽ∼U(Sd−1)

[
max

i
⟨Ṽ , Xi⟩

]
. (59)
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Proof. λ is defined as follows:

λA = E Xn∼U(Sd−1)

[ ∫
Ṽ ∈SVoronoı̈(A|Xn+1)

Ṽ dṼ
]

=⇒ ⟨λA,A⟩ = ⟨E Xn∼U(Sd−1)

[ ∫
Ṽ ∈SVoronoı̈(A|Xn+1)

Ṽ dṼ
]
, A⟩

⇔ λ = E Xn∼U(Sd−1)

[ ∫
Ṽ ∈SVoronoı̈(A|Xn+1)

⟨Ṽ , A⟩dṼ
]

⇔ λ = E Xn+1∼U(Sd−1)

[ ∫
Ṽ ∈SVoronoı̈(Xn+1|Xn+1)

⟨Ṽ , Xn+1⟩dṼ | Xn+1 = A
]

⇔ λ = E Xn+1∼U(Sd−1)

[ ∫
Ṽ ∈SVoronoı̈(Xn+1|Xn+1)

max
i

⟨Ṽ , Xi⟩dṼ | Xn+1 = A
]
.

(60)

Moreover, as done in the proof of Lemma C.1, we can leverage the invariance by any rotation of the above expression to
infer that the conditional expectation is actually independent of A:

λ = E Xn+1∼U(Sd−1)

[ ∫
Ṽ ∈SVoronoı̈(Xn+1|Xn+1)

max
i

⟨Ṽ , Xi⟩dṼ
]
. (61)

Since, in the above equation, Xn+1 has the same distribution as every element of Xn+1, a similar expression for λ can be
found using each Xn+1 element. By summing them together, we obtain:

(n+ 1)λ =

n+1∑
j=1

E Xn+1∼U(Sd−1)

[ ∫
Ṽ ∈SVoronoı̈(Xj |Xn+1)

max
i

⟨Ṽ , Xi⟩dṼ
]

= E Xn+1∼U(Sd−1)

[ n+1∑
j=1

∫
Ṽ ∈SVoronoı̈(Xj |Xn+1)

max
i

⟨Ṽ , Xi⟩dṼ
]

= E Xn+1∼U(Sd−1)

[ ∫
Ṽ ∈Sd−1

max
i

⟨Ṽ , Xi⟩dṼ
]

= E Xn+1∼U(Sd−1)

[ ∫
Ṽ ∈Sd−1

A(Sd−1)maxi⟨Ṽ , Xi⟩
A(Sd−1)

dṼ
]

= A(Sd−1)E Xn+1∼U(Sd−1)

[
E Ṽ∼U(Sd−1)[max

i
⟨Ṽ , Xi⟩]

]
,

(62)

which proves the lemma.

The last two lemmas are useful to describe the distribution of maxi⟨Ṽ , Xi⟩ when Ṽ is fixed, Xn+1 ∼ U(Sd−1), and n is
large.

Lemma C.4. Let B : (z1, z2) 7→
∫ 1

0
tz1−1(1 − t)z2−1 dt denote the Beta function. Let d ≥ 3, Ṽ ∈ Sd−1 and X be a

random vector with X ∼ U(Sd−1). Let Fradial be the cumulative distribution function (CDF) of ⟨Ṽ , X⟩. The Taylor series
expansion of Fradial near 1 is:

Fradial(t) = 1− 2
d−1
2

(d− 1)B( 12 ,
d−1
2 )

(1− t)
d−1
2 + o((1− t)

d−1
2 ). (63)
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Proof. The distribution of ⟨Ṽ , X⟩ has been studied in directional statistics (Mardia & Jupp, 2009). Its PDF is known to be:

fradial(t) =
(1− t2)

d−1
2 −1

B( 12 ,
d−1
2 )

=
(1− t)

d−1
2 −1(1 + t)

d−1
2 −1

B( 12 ,
d−1
2 )

=
(1− t)

d−1
2 −1(2− (1− t))

d−1
2 −1

B( 12 ,
d−1
2 )

=
2

d−1
2 −1(1− t)

d−1
2 −1(1− (1−t)

2 )
d−1
2 −1

B( 12 ,
d−1
2 )

=
2

d−1
2 −1(1− t)

d−1
2 −1

B( 12 ,
d−1
2 )

(

=∞∑
i=0

(d−1
2 − 1

i

)(
1− t

2

)i

).

(64)

The last line above was obtained using Newton’s generalized binomial theorem for real exponent (Coolidge, 1949). It

involves the term
( d−1

2 −1
i

)
=

( d−1
2 −1)i
i! with (·)i the Pochhammer symbol used to designate a falling factorial (Abramowitz

& Stegun, 1948). We have obtained an expression of fradial involving an infinite weighted sum of powers of (1− t) with
exponents greater or equal to 0 since d ≥ 3. Therefore, by uniqueness of the Taylor polynomial, we derive that the Taylor
series expansion of fradial near 1 is:

fradial(t) =
2

d−1
2 −1(1− t)

d−1
2 −1

B( 12 ,
d−1
2 )

+ o((1− t)
d−1
2 −1). (65)

Since by definition Fradial is the primitive of fradial on [−1, 1] and that Fradial(1) = 1, we can integrate the above equation to
get:

Fradial(t) = 1− 2

d− 1

2
d−1
2 −1(1− t)

d−1
2

B( 12 ,
d−1
2 )

+ o((1− t)
d−1
2 )

= 1− 2
d−1
2 (1− t)

d−1
2

(d− 1)B( 12 ,
d−1
2 )

+ o((1− t)
d−1
2 ).

(66)

Since this is exactly the Equation (63), this completes the proof.

Lemma C.5. Let d ≥ 3, Ṽ ∈ Sd−1 and let Fradial be defined as in Lemma C.4. For n ∈ N∗, let Xn ∼ U(Sd−1) be a set of
n i.i.d. random vectors uniformly distributed on Sd−1, and let Fn be the CDF of maxi⟨Ṽ , Xi⟩. Then, for u ∈ [−1, 1]:

lim
n→+∞

Fn(anu+ bn) = e(−(1+γu)
−1
γ ), (67)

where γ = − 2
d−1 , an = 1

2

(
(d−1)B( 1

2 ,
d−1
2 )

n

) 2
d−1

with B the Beta function, and bn = 1− 2
d−1an.

Proof. The proof relies on the Fisher–Tippett–Gnedenko theorem (Gnedenko, 1943) which states that if there exists a
couple of sequences an and bn such that the left term of Equation (67) converges, then its limit should be the CDF of a
Generalized Extreme Value distribution (GEV) with shape parameter γ, which is the right term of Equation (67). Theorem 5
of Gnedenko (1943) provides a necessary and sufficient convergence condition for a random variable with maximal value
xmax and CDF F, provided that γ < 0:

lim
t→0+

1− F ( xmax − u t )

1− F ( xmax − t )
= u

(−1
γ

)
for all u > 0 . (68)
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Recall that Lemma C.4 gives us the Taylor expansion of Fradial near 1 : Fradial(t) = 1−K(1− t)
d−1
2 + o((1− t)

d−1
2 ) with

K = 2
d−1
2

(d−1)B( 1
2 ,

d−1
2 )

. Knowing that xmax = 1, we obtain that, ∀u > 0:

lim
t→0+

1− Fradial(1− u t )

1− Fradial(1− t)
= lim

t→0+

1− (1−K(ut)
d−1
2 ) + o((t)

d−1
2 )

1− (1−K(t)
d−1
2 ) + o((t)

d−1
2 )

= lim
t→0+

K(ut)
d−1
2 + o((t)

d−1
2 )

K(t)
d−1
2 + o((t)

d−1
2 )

= u

(
d−1
2

)
,

(69)

which guarantees convergence and in the same time gives the value of γ = − 2
d−1 .

To find suitable sequences an and bn, we can use the fact that Fn(t) = Fradial(t)
n and study the behavior of lnFn(t) near

t = 1:

lnFn(t) = ln (Fradial(t)
n)

= n ln (Fradial(t))

= n(ln (1−K(1− t)
−1
γ + o((1− t)

−1
γ ))) as t → 1−

= −nK((1− t)
−1
γ + o((1− t)

−1
γ )) as t → 1−.

(70)

By defining an = −γ(Kn)γ , bn = 1− (Kn)γ and doing the change of variable u = t−bn
an

, we see that:

t = anu+ bn

= 1− (1 + γu)(Kn)γ .
(71)

Since for every u, limn→+∞(1 + γu)(Kn)γ = 0 (recall that γ < 0), the term o((1 − x)
−1
γ ) as x → 1− is equivalent to

o( 1n ) as n → +∞. this means that:

ln (Fn(anu+ bn)) = −nK

(
((1 + γu)(Kn)γ)

−1
γ + o

(
(
1

n
)

))
as n → +∞.

= −(1 + γu)
−1
γ + o(1) as n → +∞.

(72)

We can now consider the exponential of the above expression to get our asymptotic maximum distribution:

lim
n→+∞

Fn(anu+ bn) = e−(1+γu)
−1
γ
, (73)

which concludes the proof.

Corollary C.6. With Γ : z 7→
∫∞
0

tz−1e−t dt the Gamma function (Abramowitz & Stegun, 1948), we have:

E Xn∼U(Sd−1)

[
max

i
⟨Ṽ , Xi⟩

]
= 1−

Γ( d+1
d−1 )

2

(
(d− 1)B( 12 ,

d−1
2 )

n

) 2
d−1

+ o(
1

n
2

d−1

). (74)

Proof. According to the Portmanteau theorem (Billingsley, 2013), Lemma C.5 is equivalent to:

maxi⟨Ṽ , Xi⟩ − bn
an

D−→ GEV(γ), (75)

where GEV(γ) is a generalized extreme value distribution with shape parameter γ (Gnedenko, 1943). Recall that if a
sequence Z1, Z2, ... of random variables converges in distribution to a random variable Z, then for all bounded continuous
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function ϕ, lim
n→+∞

E [ϕ(Zn)] = E [ϕ(Z)]. Since maxi⟨Ṽ ,Xi⟩−bn
an

is bounded for every n, we can consider the identity

function for ϕ and obtain:

lim
n→+∞

E Xn∼U(Sd−1)

[
maxi⟨Ṽ , Xi⟩ − bn

an

]
= E [GEV(γ)] =

Γ(1− γ)− 1

γ
. (76)

Replacing γ, an and bn by their respective expressions, it implies that:

lim
n→+∞

E Xn∼U(Sd−1)

[
maxi⟨Ṽ , Xi⟩

]
− 1 + (Kn)−

2
d−1

(Kn)−
2

d−1

+ Γ(
d− 1

d− 1
)− 1 = 0

=⇒ lim
n→+∞

E Xn∼U(Sd−1)

[
maxi⟨Ṽ , Xi⟩

]
− 1 +K− 2

d−1Γ(d−1
d−1 )

n− 2
d−1

= 0.

(77)

Since K− 2
d−1 = 1

2

(
(d−1)B( 1

2 ,
d−1
2 )

n

) 2
d−1

, this is equivalent to writing:

E Xn∼U(Sd−1)

[
max

i
⟨Ṽ , Xi⟩

]
− 1 +

1

2

(
(d− 1)B( 12 ,

d−1
2 )

n

) 2
d−1

Γ(
d− 1

d− 1
) = o(

1

n
2

d−1

)

⇔ E Xn∼U(Sd−1)

[
max

i
⟨Ṽ , Xi⟩

]
= 1− Γ(

d− 1

d− 1
)
1

2

(
(d− 1)B( 12 ,

d−1
2 )

n

) 2
d−1

+ o(
1

n
2

d−1

).

(78)

We have thus obtained Equation (74), concluding the proof of the corollary.

C.2. Proof of Proposition 4.3

We now return to Proposition 4.3. In this section we consider the case of vMF-exp when d > 2 and Xi embeddings are
uniformly distributed on Sd−1. Under those assumptions:

PvMF-exp(a | n, d, V, κ) = fvMF(A | V, κ)A(Sd−1)

n
+O(

1

n1+ 2
d−1

). (79)

Proof. Similarly to the 2 dimensional case, the definition of PvMF-exp(a | n, d, V, κ) is:

PvMF-exp(A | n, d, V, κ) = E Xn∼U(Sd−1)

[
P(Ṽ ∈ SVoronoı̈(A | Xn+1) | Ṽ ∼ vMF(V, κ))

]
, (80)

which can be written using the PDF of the vMF distribution:

PvMF-exp(A | n, d, V, κ) = E Xn∼U(Sd−1)

[∫
Ṽ ∈SVoronoı̈(A|Xn+1)

fvMF(Ṽ | V, κ) dṼ

]
. (81)

As done in the 2D case, we study the Taylor expansion of fvMF near A:

∀Ṽ ∈ SVoronoı̈(A | Xn+1), fvMF(Ṽ | κ, V ) = Cd(κ)e
κ⟨V,Ṽ ⟩

= Cd(κ)e
κ⟨V,A⟩eκ⟨V,Ṽ−A⟩

= fvMF(A | V, κ)
∞∑
i=0

(κ⟨V, Ṽ −A⟩)i

i!

= fvMF(A | V, κ)(1 + κ⟨V, Ṽ −A⟩+R1(Ṽ )).

(82)
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A
V

V

O

< V, A >

Figure 6. For d = 3: vMF-exp explores the action A when Ṽ lies in its Voronoı̈ cell, shown in red.

with R1(Ṽ ) =
∑∞

i=2
(κ⟨V,Ṽ−A⟩)i

i! . Leveraging the linearity property of both integration and expectation (Jacod & Protter,
2004), we can study PvMF-exp(A | n, d, V, κ) by assessing separately the contribution of the different terms of the expansion
of fvMF in:

PvMF-exp(A | n, d, V, κ) =

E Xn∼U(Sd−1)

[∫
Ṽ ∈SVoronoı̈(A|Xn+1)

fvMF(A | V, κ)(1 + κ⟨V, Ṽ −A⟩+R1(Ṽ )) dṼ

]
.

(83)

However, contrary to the 2D case where SVoronoı̈(A | Xn+1) is always defined as the arc between 2 angles on the circle, for
d > 2 the shape of SVoronoı̈(A | Xn+1) is highly dependent of the layout of the elements of Xn that share a frontier with A.
Figure 6 provides an illustration of the complexity and diversity of the shapes of Voronoı̈ cells for uniformly sampled points
on the 3D sphere.

As a consequence, expliciting the bounds of integration, as we did in the 2D case, can be somewhat tedious. Instead, we will
leverage the geometrical properties of the problem at hand to estimate PvMF-exp(A | n, d, V, κ). We start with the zero-order
term.

C.2.1. ZERO-ORDER TERM

Since the zero-order term is constant, its integral over SVoronoı̈(A | Xn+1) can be expressed as:∫
Ṽ ∈SVoronoı̈(A|Xn+1)

fvMF(A | V, κ) dṼ = fvMF(A | V, κ)A(SVoronoı̈(A | Xn+1)), (84)

where A(SVoronoı̈(A | Xn+1)) is the value of the surface area of SVoronoı̈(A | Xn+1). To assess the expected value of the
above equation for uniformly distributed Xn, we use Lemma C.1 and obtain:

E Xn∼U(Sd−1)

[∫
Ṽ ∈SVoronoı̈(A|Xn+1)

fvMF(A | V, κ) dṼ

]
=

fvMF(A | V, κ)A(Sd−1)

n+ 1
(85)

=
fvMF(A | V, κ)A(Sd−1)

n
+O(

1

n2
).
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C.2.2. FIRST-ORDER TERM

We want to estimate the value of:

E Xn∼U(Sd−1)

[∫
Ṽ ∈SVoronoı̈(A|Xn+1)

fvMF(A | V, κ)κ⟨V, Ṽ −A⟩dṼ

]
(86)

= fvMF(A | V, κ)κ

(
⟨V,E Xn∼U(Sd−1)

[∫
Ṽ ∈SVoronoı̈(A|Xn+1)

Ṽ dṼ

]
⟩ − ⟨V,A⟩A(Sd−1)

n

)
.

Using Lemmas C.2 and C.3 as well as Corollary C.6, the left term inside the parentheses is:

⟨V,E Xn∼U(Sd−1)

[∫
Ṽ ∈SVoronoı̈(A|Xn+1)

Ṽ dṼ

]
⟩

= ⟨V,A⟩A(Sd−1)

n+ 1
E Xn∼U(Sd−1),Ṽ∼U(Sd−1)

[
max

i
⟨Ṽ , Xi⟩

]
= ⟨V,A⟩A(Sd−1)

n+ 1

1−
Γ( d+1

d−1 )

2

(
(d− 1)B( 12 ,

d−1
2 )

n

) 2
d−1

+ o(
1

n
2

d−1

)

 .

(87)

Re-injecting this expression into Equation (86) gives the following expression for the contribution of the first-order term to
the probability of sampling A:

E Xn∼U(Sd−1)

[∫
Ṽ ∈SVoronoı̈(A|Xn+1)

fvMF(A | V, κ)κ⟨V, Ṽ −A⟩dṼ

]
(88)

= −fvMF(A | V, κ)A(Sd−1)

n+ 1
κ⟨V,A⟩

Γ( d+1
d−1 )

2

(
(d− 1)B( 12 ,

d−1
2 )

n

) 2
d−1

+ o(
1

n
2

d−1

)

 .

C.2.3. REMAINDER TERM

As done in the 2D proof, we leverage the Taylor-Lagrange inequality (Abramowitz & Stegun, 1948). The second derivative
of the function f(x) = Cd(κ)e

κx is f(x)(2) = κ2f(x), which is bounded on x ∈ [−1, 1] by M = κ2Cd(κ)e
κx. This

implies that:

|R1(Ṽ )| ≤ M⟨V, Ṽ −A⟩2

2

≤ M∥Ṽ −A∥22
2

(according to the Cauchy-Schwarz inequality (Jacod & Protter, 2004))

= M(1− ⟨Ṽ , A⟩).

(89)

This inequality holds for every Ṽ ∈ SVoronoı̈(A | Xn+1) when Xn ∼ U(Sd−1), which means that:

E Xn∼U (Sd−1)

[∫
Ṽ ∈SVoronoı̈(A|Xn+1)

fvMF(A | V, κ)|R1(Ṽ )|dṼ

]

≤ fvMF(A | V, κ)E Xn∼U (Sd−1)

[∫
Ṽ ∈SVoronoı̈(A|Xn+1)

M(1− ⟨Ṽ , A⟩) dṼ

]

= fvMF(A | V, κ)A(Sd−1)

n+ 1
M(1− E Xn+1∼U (Sd−1)

[∫
Ṽ ∈Sd−1

max
i

⟨Ṽ , Xi⟩dṼ
]
)

= fvMF(A | V, κ)MA(Sd−1)

n+ 1

Γ( d+1
d−1 )

2

(
(d− 1)B( 12 ,

d−1
2 )

n

) 2
d−1

+ o(
1

n
2

d−1

)


= O(

1

n1+ 2
d−1

).

(90)
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We used Lemmas C.2 and C.3 to go from line 2 to 3, and Corollary C.6 to go from line 3 to 4. In essence, we have bounded
the contribution of R1(Ṽ ) to the probability of sampling A as follows:

E Xn∼U (Sd−1)

[∫
Ṽ ∈SVoronoı̈(A|Xn+1)

fvMF(A | V, κ)|R1(Ṽ )|dṼ

]
= O(

1

n1+ 2
d−1

) (91)

Finally, adding up Equations (85), (89), and (91), we conclude the proof of Proposition 4.3 for d ≥ 3 and (via the first-order
term) simultaneously justify the approximate probability P1(a | n, V, κ) introduced in Proposition 4.4.
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D. Similar Asymptotic Behavior of B-exp and vMF-exp for Large Action Sets (Proof of
Proposition 4.1)

Finally, Propositions 4.2 and 4.3 allow us to derive Proposition 4.1, i.e., that in the setting of Section 4.1, we have:

lim
n→+∞

PB-exp(a | n, d, V, κ)
PvMF-exp(a | n, d, V, κ)

= 1. (92)

Proof. Acording to Proposition 4.2, we have:

PB-exp(a | n, d, V, κ) = fvMF(A | V, κ)A(Sd−1)

n
+ o(

1

n
√
n
). (93)

Moreover, according to Proposition 4.3, we have:

PvMF-exp(a | n, d, V, κ) = fvMF(A | V, κ)A(Sd−1)

n
+

{
O( 1

n2 ) if d = 2,

O( 1

n
1+ 2

d−1
) if d > 2.

(94)

Therefore:

lim
n→+∞

PB-exp(a | n, d, V, κ)
PvMF-exp(a | n, d, V, κ)

= lim
n→+∞

n

n

PB-exp(a | n, d, V, κ)
PvMF-exp(a | n, d, V, κ)

=
fvMF(A | V, κ)A(Sd−1) + 0

fvMF(A | V, κ)A(Sd−1) + 0

= 1.

(95)

E. Link with Thompson Sampling
At first glance, one might draw some similarities between vMF-exp and Thompson Sampling (TS) with Gaussian prior for
contextual bandits (Chapelle & Li, 2011). Admittedly, vMF-exp shares a common spirit with TS, where action selection is
preceded by sampling individual weights according to a Normal distribution centered on an observed context/state vector.
However, vMF-exp also presents two major differences:

• Firstly, in vMF-exp, vector sampling is performed according to a vMF hyperspherical distribution, centered on the state
embedding vector V . This choice of distribution ensures that vectors with the same inner product with the state vector
have the same probability of being sampled, as illustrated in Figure 1(a). This aligns better with the similarity used to
retrieve nearest neighbors and, as emphasized in this paper, leads to probabilities of exploring actions asymptotically
comparable to Boltzmann Exploration (with better scalability) under the theoretical assumptions of Section 4.1.

• Secondly, vMF-exp is not designed to maximize the expected reward of a policy in an RL or contextual bandit
environment and does not impose any parameter update strategy. Instead, it serves as an action selection tool for any
scenario where policy updates cannot be performed regularly (as in the batch RL setting commonly found in industrial
applications), yet broad exploration must still be guaranteed between consecutive updates.
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F. Sampling from the von Mises-Fisher Distribution
F.1. Radial-tangent decomposition

Given a vector Ṽ ∈ Sd−1 and a concentration κ ∈ R+, the algorithm described in (Pinzón & Jung, 2023) sample from
a vMF(V, κ) by leveraging the radial-tangent decomposition of the elements of Sd−1. For any Ṽ ∈ Sd−1, let us call
t̃ = ⟨V, Ṽ ⟩. Then we have:

Ṽ = t̃V +
√
1− t̃2ṼO (96)

where the vector ṼO has a unit norm and is orthogonal to V .

F.2. vMF distribution

If, Ṽ ∼ vMF(V, κ), then :

• t̃ is a scalar valued random variable.

• ṼO is a random vector uniformly distributed on the (d-2) dimensional sub-sphere that is centered at and perpendicular
to V . For instance, for d = 3, this would mean a circle centered around V .

• t̃ and ṼO are independent.

Since the reciprocal is also true, t and ṼO can thus be separately sampled to obtain Ṽ .

F.3. Sampling t̃ = ⟨V, Ṽ ⟩

The PDF of t̃ is known (Fisher, 1953) and follows:

fradial(t;κ, d) =
(κ/2)

d
2−1

Γ( 12 )Γ(
d−1
2 )I d

2−1(κ)
etκ(1− t2)

d−3
2 (97)

This PDF can be used to sample r through rejection sampling (Gentle, 2009).

F.4. Sampling ṼO

ṼO can be obtained by following the steps of algorithm 1.

Algorithm 1 Sample ṼO

1 - Sample vector U uniformly from Sd−1;
2 - Compute projection of U on V : W = ⟨U, V ⟩V ;
3 - Subtract projection and normalize: ṼO = U−W

||U−W || ;

4 - return ṼO

Note that a simple way to sample U uniformly on Sd−1 is to sample d standard Gaussians independently (one for each
dimension) and then normalize the resulting vector (Gentle, 2009).

F.5. Wrapping up

The vector Ṽ can now be computed by summing the right term of equation 97. Overall, we see that sampling Ṽ from
vMF(V, κ) is data-independent, hence the scalability of the approach.
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G. Additional Monte Carlo Simulations
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Figure 7. We report complete results for the Monte Carlo simulations presented and discussed in Section 4.3, involving more combinations
of d, κ, and ⟨V,A⟩). We recall that PB-exp(a) and P0(a) are indistinguishable for this range of n values. We emphasize that the y-axis is
on a 1e-5 scale; hence, all probabilities are extremely close.
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H. Additional Experiments on a Real-World Dataset of GloVe Word Embedding Vectors
While our main contributions in this work are theoretical, we aimed in the main paper to validate our key findings with
Monte Carlo simulations, which involved synthetic data. Understanding that some readers may wish to further explore our
topic through reproducible experiments on real-world data, we present an additional study in this Appendix H. This study
experimentally validates the main properties of vMF-exp on a large-scale, publicly available real-world dataset.

H.1. Experimental setting

We present vMF-exp experiments on real-world, publicly available data. Specifically, we compare the behaviors of B-exp
and vMF-exp on the GloVe-25 dataset of 1 million GloVe word embedding vectors with dimension d = 25 (Pennington
et al., 2014). Each vector, learned using word2vec (Mikolov et al., 2013) from 2 billion tweets, represents a word token.
We subtract the set’s average from each vector and divide them by their norms. We obtain a vector set, denoted G, with all
vectors lying on the unit hypersphere, making GloVe-25 a relevant large-scale dataset for our study.

Our experiments follow the protocol outlined in Section 4.3 of the main paper. In this section, we compared the empirical
probabilities PB-exp(a) and PvMF-exp(a) of sampling an action a represented by a vector A given a state vector V , for varying
action numbers n and inner products ⟨V,A⟩. While we relied on Monte Carlo simulations with uniformly drawn vectors
Xn ∼ U(Sd−1), in this Appendix H, vectors are sampled from G, with V and A also drawn from G such that ⟨V,A⟩ matches
the pre-selected values. Our goal is to empirically compare PB-exp(a) and PvMF-exp(a), while verifying the claims that P1,
P2, and P3 simultaneously hold for vMF-exp.

Finally, in our Sections 4.2 and 4.3, we provided analytical approximations of PB-exp(a) and PvMF-exp(a) in the presence
of independent and identically distributed (i.i.d.) uniform embedding vectors. We will assess the usefulness of these
approximations on these GloVe vectors, which do not strictly satisfy these strong assumptions.

Finally, regarding these experiments on GloVe-25, we note that:

• The GloVe-25 dataset is available for download at: https://nlp.stanford.edu/projects/glove/.

• In our experiments, we use the Python vMF sampler from Pinzón & Jung (2023) to efficiently explore large action sets.

• All results are reproducible using our source code: https://github.com/deezer/vMF-exploration.

H.2. Results and Discussion

On P1 We now discuss our results. We first focus on P1. While B-exp requires computing ⟨V,Xi⟩ and softmax values for
all n vectors Xi ∈ Xn, vMF-exp only involves sampling a d-dimensional vector (in constant time with respect to n) and
finding its approximate nearest neighbor (ANN) in Xn.

Table 1 compares the performance of four popular ANN algorithms on GloVe-25. Following standard ANN literature
(Simhadri et al., 2024), our performance metric is the maximum throughput, measured in queries per second (QPS), for
which the average recall of the exact top-10 neighbors exceeds 90%. We also report the throughput of exhaustive search, as
an indicator of B-exp’s inefficiency.

Table 1 shows that exhaustive search yields throughput 2 to 3 orders of magnitude lower than ANN methods. This confirms
the significantly better scalability (P1) of vMF-exp compared to B-exp.

Table 1. Performance of popular ANN algorithms on GloVe-25, extracted from the benchmark of Aumüller et al. (2017). Following
Simhadri et al. (2024), our performance metric is the maximum throughput, measured in Queries Per Second (QPS), for which the average
recall of the exact top-10 neighbors exceeds 90%. The evaluated algorithms include two implementations of HNSW (Malkov & Yashunin,
2018), one from the Faiss library (Douze et al., 2024) and the other from NMSLIB (Boytsov & Naidan, 2013), as well as ScaNN (Guo
et al., 2020) and NGT-QG (Iwasaki & Miyazaki, 2018). Exhaustive search is 2 to 3 orders of magnitude slower than ANN methods.

Algorithm Exhaustive Search HNSW (Faiss) HNSW (NMSLIB) ScaNN NGT-QG

Maximum Throughput 34 6197 14080 23436 22733in Queries Per Second (QPS)
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On P2 and P3 Figure 8 compares PB-exp(a) and PvMF-exp(a) for increasing values of n and ⟨V,A⟩. Figure 8(a) highlights
the two properties that make B-exp popular in RL: the ability to sample actions with unrestricted radius (P2) and the ordering
of sampling probabilities based on action similarity to V (P3).

Importantly, Figure 8(b) confirms that vMF-exp also satisfies both properties. In our tests, A always has a positive sampling
probability, which strictly increases with ⟨V,A⟩. Thus, vMF-exp also satisfies P2 and P3 on GloVe-25.

On Theoretical Approximations Finally, Figure 9 shows that, although GloVe vectors are not i.i.d. and uniform, the
analytical approximations of the main paper for PB-exp(a) and PvMF-exp(a) often remain accurate, particularly for B-exp.
Also, vMF-exp closely matches B-exp’s probabilities for low absolute values of ⟨V,A⟩.

However, as |⟨V,A⟩| increases, the gap between PvMF-exp(a) and PB-exp(a) grows more rapidly than predicted by approxi-
mations, highlighting the limitations of the i.i.d. and uniform assumptions and opening the way for future research on more
general expressions.

Conclusion This additional study confirmed the key theoretical and scalability properties of vMF-exp on a large-scale and
publicly available real-world dataset. Our results highlight its potential as a practical solution for exploring large action sets
when hyperspherical embedding vectors represent these actions.
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Figure 8. We report the empirical probabilities PB-exp(a) and PvMF-exp(a) of sampling an action a represented by a GloVe embedding vector
A, using B-exp and vMF-exp, respectively, given a state vector V , with 20000 ≤ n ≤ 100000 and ⟨V,A⟩ ∈ {0.9, 0.3, 0.0,−0.3,−0.9},
and with d = 25 and κ = 1. Sampling is repeated 30 million times and averaged to obtain precise estimates. For both methods, the
probability of sampling a for exploration is strictly positive (P2) and is a strictly increasing function of the inner product similarity ⟨V,A⟩
(P3). Results remain consistent when κ is modified.
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Figure 9. We compare PB-exp(a) and PvMF-exp(a) on GloVe-25 to the analytical approximations P0(a) and P1(a) stated in Propositions
4.1 to 4.4 of the main paper under the assumption of i.i.d. and uniformly distributed vectors. Our tests confirm the usefulness of these
approximations on GloVe-25. The yellow curve (P0(a)) is indistinguishable from the red curve (PB-exp(a)), indicating that Proposition
4.2 holds across all configurations. Furthermore, PvMF-exp(a) (blue) remains close to PB-exp(a) (red) for low absolute values of ⟨V,A⟩
(Figures 9(a), 9(b), and 9(c)), as anticipated by Propositions 4.1 and 4.3. In Figures 9(b) and 9(c), the small difference between PvMF-exp(a)
and PB-exp(a) aligns with the alternative expression P1(a) (green) derived in Proposition 4.4. However, as |⟨V,A⟩| increases (Figures 9(d)
and 9(e)), the difference between vMF-exp and B-exp grows more rapidly than predicted by Proposition 4.4, highlighting the limitations
of the i.i.d. and uniform assumptions.
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I. Application to Large-Scale Music Recommendation
Our analysis of vMF-exp in this paper was intentionally general, as the method can be applied to various problem settings.
In this Appendix I, we showcase a real-world application of vMF-exp.

I.1. Experimental Setting

We consider the “Mixes inspired by” feature of the global music streaming service Deezer5. This recommender system is
deployed at scale and available on the homepage of this service (Bendada et al., 2023a). As shown in Figure 10, it displays a
personalized shortlist of songs, selected from those previously liked by each user. A click on a song generates a playlist of
40 songs “inspired by“ the initial one, with the aim of helping users discover new music within a catalog including several
millions of recommendable songs.

Figure 10. Interface of the “Mixes inspired by” recommender system on the music streaming service Deezer.

To generate playlists, Deezer leverages a collaborative filtering model (Koren & Bell, 2015). This model learns unit
norm song embedding representations of dimension d = 128 by factorizing a mutual information matrix based on song
co-occurrences in various listening contexts, using singular value decomposition (SVD) (Banerjee & Roy, 2014; Briand
et al., 2021; 2024). Inner product proximity in the resulting embedding space aims to reflect user preferences. When a user
selects an initial song, the model retrieves its embedding, then (approximately) identifies its neighbors in the embedding
space using the efficient Faiss library (Johnson et al., 2019) for ANN. Currently, Deezer generates the entire playlist at once
in production.

The service is considering RL approaches to, instead, recommend songs one by one while adapting to user feedback on
previous songs of the playlist (likes, skips, etc.). However, as explained in Section 1, adopting such approaches would
require exploring millions of possible actions/songs, significantly increasing the complexity of this task.

In this Appendix I, we continue generating “Mixes inspired by” playlists all at once, but take a step towards RL by comparing
three methods for exploring large action sets of millions of songs:

• vMF-exp: we use the embedding of the user’s selected song as the initial state V . We sample a random state embedding
Ṽ according to the vMF distribution, using the estimator of Banerjee et al. (2005) to tune κ (see Equation (4) of Sra
(2012)). Finally, we recommend the 40 nearest neighbors of Ṽ in the embedding space according to the ANN engine.

• TB-exp: comparing vMF-exp to full B-exp is practically intractable at this scale. We compare vMF-exp to TB-
exp with a similar κ. We first retrieve the m = 500 nearest neighbors of the initial song in the embedding space,
according to the ANN engine. Then, we generate the playlist by sampling 40 songs from these 500 using a truncated
Boltzmann distribution.

• Reference: we also compare vMF-exp to a baseline that retrieves the 500 nearest neighbors of the initial song using
ANN, then shuffles them randomly to generate a playlist of 40 songs.

In early 2024, we conducted an industrial-scale online A/B test on the music streaming service Deezer to compare these
exploration strategies in real conditions. The test involved millions of users worldwide, randomly split and unaware of the test.

5https://www.deezer.com/en/
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I.2. Results and Discussion

Firstly, it is important to highlight that we were able to successfully deploy vMF-exp in Deezer’s production environment,
achieving a sampling latency of just a few milliseconds, comparable to the other methods. This industrial deployment on a
service used by millions of users on a daily basis confirms the claimed scalability of vMF-exp and its practical relevance for
large-scale applications.

Using vMF-exp or TB-exp for exploration improved the daily number of recommended songs “liked” by users through
“Mixes inspired by” (liking a song adds it to their list of favorites), compared to the reference baseline. For confidentiality,
we do not report exact numbers of likes or users in each cohort, but present relative rates with respect to the reference. On
average, users exposed to vMF-exp or TB-exp added 11% more recommended songs to their playlists than the reference
cohort. These differences were statistically significant at the 1% level (p-value < 0.01). No apparent differences were
observed between vMF-exp and TB-exp, showing that vMF-exp is competitive with TB-exp.

In addition, vMF-exp, which does not suffer from the restricted radius of TB-exp, recommended more diverse playlists. We
measured the average Jaccard similarity (Tan et al., 2016) of playlists generated from the same initial selection, to assess
how similar the songs sampled from the same state embedding were, for each method. Results reveal that TB-exp had an
average Jaccard similarity 35% higher (less diverse playlists) than vMF-exp, a statistically significant difference at the 1%
level (p-value < 0.01). Therefore, vMF-exp allowed for a more substantial exploration, without compromising performance.

At the time of writing, Deezer continues to use vMF-exp for “Mixes inspired by” recommendations. Playlists are still
generated at once, but our work equips this service with an effective strategy to explore their large and embedded action set
of millions of songs. This opens interesting avenues for further investigation of RL for recommendation. In the near future,
Deezer will launch tests involving actor-critic RL models (Konda & Tsitsiklis, 1999; Sutton & Barto, 2018) to explore and
generate songs sequentially based on user feedback.
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